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Abstract— In planning an s-curve speed profile for a computer 

numerical control (CNC) machine, centripetal acceleration and 

its derivative have to be considered. In a CNC machine, these 

quantities dictate how much voltage and current should be 

applied to servo motor windings. In this paper, the necessity of 

considering centripetal jerk in speed profile generation especially 

in the look-ahead mode is explained. It is demonstrated that the 

magnitude of centripetal jerk is proportional to the curvature 

derivative of the path known as "sharpness". It is also explained 

that a proper limited jerk motion is only possible when a G2-

continuous machining path is planned. Then using a simplified 

mathematical representation of clothoids, a novel method for 

approximating a given path with a sequence of clothoid segments 

is proposed. Using this method, a semi-parallel G2-continuous 

path with adjustable deviation from the original shape for a 

sample machining contour is generated. Maximum permissible 

feed rate for the generated path is also calculated. 

CNC; trajectory planning; s-curve; limited jerk; centripetal jerk 

look-ahead; clothoids; sharpness 

I. INTRODUCTION 

Many CNC controllers still use trapezoidal speed profile 
due to its simplicity and robustness. Figure 1a shows an 
example of this profile [1]. In this kind of profile, speed 
increases linearly from zero to a maximum speed at the 
beginning and decreases from the maximum speed to zero at 
the end of the profile. The main drawback of this method is 
that it requires a step change in acceleration. In a CNC 
machine, acceleration is determined by the electrical currents 
flowing in motor windings. So a step change in acceleration 
requires a step change in motor currents. However the 
windings usually have high inductance values which prevent 
fast changes of the currents flowing in them. So practically, 
accurate following of a trapezoidal speed profile is impossible. 

On the other hand, derivatives of motor currents depend on 
the voltages applied to the windings. These voltages are 
controlled by fast electronic switches and can change in a 
fraction of a millisecond. As a result, regarding the physics of 

the system, the only parameter that can have an almost 
instantaneous change is the derivative of acceleration which is 
known as "jerk". Maximum applicable jerk is limited by a few 
factors including maximum motor voltage. Contrary to 
trapezoidal profiles, limited jerk speed profiles (also known as 
S-curve profiles) respect physical limitations of the system by 
bounding the maximum applied jerk. Figure 1b shows a sample 
s-curve profile [1].  

Many papers have been published proposing different 
algorithms for generating limited jerk speed profiles [1]. In 
these papers, methods for limiting tangential jerk have been 
proposed. However, in most cases only bounding the tangential 
jerk might be insufficient.  

When moving on curved paths, changes in centripetal 
acceleration can induce large jerk components on participating 
axes. The formula for centripetal acceleration a=v

2
/r is a well-

known equation which states that this quantity depends on 
tangential velocity and the radius of curvature. In other words, 
centripetal acceleration and jerk depend not only on the speed 
profile, but also on the shape of the path. 

In order to make the problem clearer, a vehicle moving in a 
highway can be considered as an example. For a vehicle, 
centripetal acceleration corresponds to the angle of front 
wheels and centripetal jerk is determined by the rate by which a 
driver turns the steering wheel. On a straight line, the radius of 
curvature is infinite. So the centripetal acceleration would be 
zero. Now suppose that the car goes suddenly from a straight 
line to a circular bend with radius of r0. To stay on the bend, 
the driver has to turn the front wheels instantaneously in order 
to apply a centripetal acceleration equal to a=v

2
/r0. Obviously 

an instantaneous reorientation of the wheels is physically 
impossible. So the car has to stop, reorient its front wheels and 
start moving again [2]. This problem will happen for paths 
consisted of line segments and arcs because of curvature 
discontinuity. Planning G2-continuous paths, on which the 
radius of curvature never changes suddenly, can prevent this 
problem.  
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Figure 1.  Trapezoidal speed profile (a) versus s-curve speed profile (b). 

Derivative of acceleration is limited in b. 

There are two modes of operation in CNC machines known 
as “Look-ahead” and “Exact Stop”. In the latter mode, no 
consideration of the machining path is required because the 
machine stops after travelling on each line or arc and starts 
moving again on the next one. But in the look-ahead mode, in 
order to have a true limited jerk motion, a G2-continuous path 
with limited sharpness (derivative of curvature) will be 
required. However the given machining path is not necessarily 
G2-continuous. So an approximation of the path with limited 
deviation from the main path has to be generated. A method for 
generating such approximation will be presented in the next 
sections. 

The rest of this paper is organized as follows. Section II 
briefly reviews methods proposed in literature for G2-
continuous path generation. Calculation of jerk is described in 
Section III. Section IV introduces a method for fitting a 
clothoid segment. How to generate a G2-continuous path using 
the proposed method is discussed in Section V. Finally, Section 
VI concludes the paper. 

II. RELATED WORK 

Methods for generating G2-continuous paths using 
clothoids are proposed in a number of papers. Mostly, these 
methods are intended for vehicles like wheeled robots [2], [3], 
[4], [5], autonomous guided vehicles [6], autonomous 
underwater vehicles [7], and airplanes [8]. CNC machines are 
different in respect of the feasible path. For a CNC machine, 
the preliminary path is already given and limiting the deviation 
from the initial path is the first priority. Furthermore maximum 
permissible errors are much smaller in CNC applications. 
Besides, vehicles normally move on straight lines and G2-
continuous path planning is necessary for maneuvers like lane 
changing, overtaking and parking [9]. This is not the case for 
CNC machines.  

In [10] a method for converting a piecewise linear curve to 
a G2-continuous path using Bezier curves is presented. The 
method can satisfy error limit constraints of CNC applications. 

However the method is rather complicated and divides the 
initial path into some groups and applies different methods to 
each group.    

The method explained in [11] can be used in CNC 
machines as well. Using this method, an existing path can be 
smoothed while respecting maximum error constraint. But the 
resulting sharpness might be high since the curvature changes 
to zero in the middle of every line segment. This problem has 
been avoided in the method proposed in this paper. 

 

III. REQUIRED JERK CALCULATION  

A clothoid is a curve whose curvature is a linear function of 
the curve’s length. These curves can be used to provide a 
smooth transition between curves with different curvatures. In 
this section, the jerk vector generated due to changes in 
centripetal acceleration, when moving on a clothoid will be 
discussed. Both circular arcs and line segments can be 
considered as special cases of clothoid segments. 
Consequently, jerk formula, in the case of a circular motion, is 
a special case of the extracted equation. Notation used to 
describe a clothoid is taken from [11].  

In a clothoid, according to the definition, the curvature can 
be expressed as (1) where κ0=1/r0 is the initial curvature, c is 
the rate of change of curvature known as sharpness, and s is the 
arc length of the clothoid.  

 

            (1) 

 
It is assumed that the clothoid is a transition between a 

curve with curvature equal to κ0=1/r0 to another curve with 
curvature equal to κ1=1/r1 as depicted in figure 2. It’s also 
assumed that the initial tangent angle is θ0. Curvature by 
definition is the derivative of tangent angle θ(s) to the curve 
length s. Thus, the equation for θ(s) can be derived by 
integrating (1) as stated in (2). 

 

         ∫       
 

 

        
 

 
     (2) 

 
Having the tangent angle θ(s) from (2) and the magnitude 

of tangential velocity, vector of tangential velocity can be 
written as (3) in which,  ̂  and  ̂  are the unit vectors 
codirectional with x and y axes, |v|=ds/dt is the magnitude of 

tangential velocity and  ̂ is the unit tangent vector.  
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By differentiating (3) with respect to time, acceleration 

vector can be derived as given in (4): 
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Figure 2.   A clothoid (the curve in the middle) used as a transition curve 

connecting two circular arcs with different radii. Curvature of the clothoid 

changes linearly from 1/r0 to 1/r1.  
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With respect to (4) and considering the fact that the 

expression in the square brackets, is the tangential unit vector 
implicitly defined in (3) rotated by 90 degrees, the equation can 
be written in the more concise form of (5). 

 

     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗                       ̂  (5) 

 

In the case of a circular motion, (5) will turn into   
     

         which is the well-known centripetal 
acceleration formula. Finally the equation for jerk is stated in 
(6). 
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                       ̂ 
(6) 

 
According to (6), the jerk vector has two components. The 

magnitude of the centripetal component is      . This shows 
that the faster the curvature of an arc changes, the greater jerk 
on participating axes would be required. The tangential 
component is not of interest in this paper but has to be 
considered in speed profile generation.  

Equations derived in this section show that in order to limit 
the required jerk, both curvature and its derivative should be 
bounded. This can be achieved by careful planning of 
machining path.  Nevertheless, in addition to planning a proper 

tool path, in every section of the contour, feed rate should be 
limited according to the curvature and the rate of change of 
curvature to prevent violating maximum allowable acceleration 
and jerk. According to (5) and (6), feed limits imposed by 
curvature and sharpness are given in (7), (8) and (9) in which 
amax and jmax are the maximum permissible acceleration and 
jerk respectively. κmax is the maximum curvature (minimum 
radius) on the path and cmax is the maximum curvature 
derivative (sharpness) of the path. fmax1 is the feed limit due to 
centripetal acceleration and fmax2 is the limit due to centripetal 
jerk. 

  

       √          (7) 

       √         
 

 (8) 

                       (9) 

IV. CLOTHOID FITTING  

In this section a method for fitting a clothoid segment 
between a start point and a line will be presented. The clothoid 
will end to a point with (x(s), y(s)) coordinates on the line and 
it should form a right angle with the line at the end point. A 
sample line and the perpendicular clothoid are displayed in 
figure 3. Generally the clothoid can have an initial curvature of 
κ0 and an initial angle of θ0 with the positive direction of x axis 
at the start point. The line is described by y=mx+b equation. 
This method will be used in the next section for generating a 
G2-continuous path. 

Coordinates of any point on a clothoid can be calculated by 
integrating the right side of equation (3) as stated in (10),(11) 
and (12): 

 

     ⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗       ̂       ̂  (10) 
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Using (11) and (12) coordinates of the end point of the 

clothoid segment can be calculated. In these equations,     ⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ is 
the position vector of the end point (or any point corresponding 
to arc length equal to s), (x0, y0) are the coordinates of the start 
point of the clothoid segment, κ0 is the curvature at the start 
point, θ0 is the tangent angle at the start point, c is the 
sharpness of the clothoid and s is its length. All parameters 
except c and s are given. Two constraints have to be satisfied: 
end point should lie on the line and clothoid should be 
perpendicular to the line at the end point. First constraint 
implies that x(s) and y(s) should satisfy the line’s equation i.e. 
y=mx+b. The first constraint is expressed in (13). For two 
shapes to form a right angle, product of their slopes should 
equal -1. This second constraint is formulated in (14) in which 
m is the line’s slope. 

 

               (13) 

 
        

        
      (14) 
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Figure 3.  Fitting a clothoid between a start point and a line. The end point 

lies on the line and the two shapes form a right angle at the end point.  

 
Replacing x(s) and y(s) from (11) and (12) in (13) and (14), 

yields equations (15) and (16): 
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In (15) and (16), c (sharpness of the clothoid) and s (arc 

length of the clothoid) are the only unknown variables. 
Equation (15) and equation (16) are derivable in respect to c 
and s. The two unknown variables can be calculated by 
Newton method in just a few iterations. After finding c and s, 
coordinates of the end point (x(s), y(s)) can be calculated using 
(11) and (12). The curvature and the angle of the clothoid at the 
end point can be calculated using (1) and (2) respectively.  

V. GENERATING A G2-CONTINUOUS PATH  

Using the method explained in the previous section, a G2-
continuous path, semi-parallel to the given path can be 
generated. Using (5) and (6) the maximum feed rate on the 
approximating path can be calculated. The proposed algorithm 
will be described by using an example. Consider a machine 
with maximum feed rate of 3000 mm/min on X and Y axes. If 
motors can generate enough torque for the axes so that this feed 
rate can be reached in one second, maximum acceleration 
would be amax=50 mm/s

2
. Given that this acceleration can be 

gained in 0.1 s, maximum achievable jerk would be jmax=500 
mm/s

3
. Figure 4 shows the sample desired machining path. It 

shows a rounded corner which happens frequently in CNC 
milling. Obviously the path lacks curvature continuity and 
can’t be followed by the machine without complete stops at A 
and B points marked in the picture. 

 
Figure 4.  Sample machining contour. With a limited jerk speed profile, 

machine has to stop at A and B and start moving again.  

Firstly the path should be divided into a number of 
segments. In figure 5, the shape is divided into 6 segments 
using 7 points marked in the picture. In figure 5, every three 
adjacent points form an angle. Bisectors of these angles are 
displayed using dotted lines. Fitted clothoids are perpendicular 
to these lines. The first clothoid has been fitted between the 
start point of the shape and the bisector of the first angle using 
the method described in the previous section. Next clothoid has 
been fitted between the end point of the first clothoid and the 
bisector of the second angle using the same method and so on. 
For every clothoid equations (15) and (16) has been solved and 
values for sharpness and arc length have been found.  

The generated path has a maximum distance of 0.94 mm 
with the original path. Curvature changes have been depicted in 
figure 6. Maximum sharpness happens in the 3

rd
 and 4

th
 

clothoids and is cmax=0.0084. According to (8), the feed rate 
limit due to sharpness on these clothoids will be 

√         
 

=2342 mm/min. As expressed in (7) maximum 

curvature – or minimum radius - imposes another limit on the 

feed rate equal to √         =1271 mm/min which is the 

dominant limit in this case. 

  
Figure 5.  Generating approximating G2-continuous path. The clothoids 

make right angles with dotted lines. Sharpness and arc length values (c and s) 

for a few clothoids are reported in this picture.  
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Figure 6.  Curvature profile of the generated path.  

It should be noted that usually machining is carried out in 
two phases: roughing cycle and finishing cycle. The introduced 
error in the example case is relatively large for finishing cycles. 
In the proposed method in order to decrease the error between 
the G2-continuous path and the given path, number of 
segments should increase. One undesirable by-product of 
shrinking segment sizes would be an increase in the sharpness 
which will result in reduced maximum permissible feed rate. 
The original shape has infinite values of sharpness at two 
points. So it is predictable that by approaching the shape, 
sharpness would increase.  

Basically the proposed method generates a path semi-
parallel to the original path. Two parallel shapes with one 
common point are actually coincident shapes and lie exactly on 
top of one another. Using the proposed method when the 
number of segments tends to infinity, the generated shape will 
be parallel to the original shape and consequently will lie 
exactly on top of it. 

It was observed that by every doubling of the number of 
segments, error decreases almost fourfold while the sharpness 
increases approximately twofold. Maximum sharpness and 
maximum error versus segment number graphs for the example 
case are illustrated in figure 7. For the sample path, by 
increasing the number of segments to 96, maximum deviation 
decreased to 0.004 mm and maximum sharpness increased to 
0.1020, imposing a feed rate limit of 476 mm/min. Curvature 
graph for this case is reported in figure 8. 

  
Figure 7.  Maximum path error and maximum sharpness of the G2-

continuous path generated by the proposed method versus number of used 

clothoid segments. By increasing the number of segments, sharpness increases 

linearly while error decreases quadratically.  

 
Figure 8.  Curvature profile of the generated path when using 96 clothoid 

segmetns.  

VI.   CONCLUSION  

The necessity of generating a continuous curvature path 
was described and equations explaining the relation between 
sharpness and centripetal jerk were derived. A method for 
fitting clothoids between a start point and a line was 
introduced. The method was used in the proposed algorithm for 
making a G2-continuous path approximating the original path. 
It was demonstrated through a few graphs that maximum 
deviation between the generated path and original path can be 
reduced by increasing the number of clothoid segments. 
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