
Smooth Path Planning using Biclothoid Fillets for High Speed CNC MachinesI

Abbas Shahzadeha, Abbas Khosravia, Troy Robinetteb, Saeid Nahavandia

aDeakin University, 75 Pigdons Road, Waurn Ponds VIC 3216, Australia
bANCA Motion, 1 Bessemer Rd, Bayswater North VIC 3153, Australia

Abstract

In high speed Computer Numerical Control (CNC) machines, cut velocities greater than 60 metres per minute and
accelerations higher than 2g are used. In such high feedrates and accelerations, even a small discontinuity in curvature
or in tangency can result in jerk spikes and consequently in machine vibrations, poor cut quality and decreased lifespan
of the equipment. To prevent these consequences, using path smoothing techniques is necessary. Many path smoothing
methods have been proposed in the literature to eliminate toolpath discontinuities. However the usage of almost all of
these techniques is limited to purely linear toolpaths. In this paper a new path smoothing method using biclothoid fillets
is introduced. The proposed method can be used to convert any given path consisted of lines and arcs to a curvature
continuous path. The generated path is arc length parameterised which makes it easy to interpolate. The distance
between the G2-continuous path and the original toolpath is limited to an adjustable tolerance. The proposed method
has been tested on a CNC laser cutting machine and the results are reported. The main contribution of this paper is a
fillet fitting method which is not limited to line to line transitions. The proposed smoothing fillets can be fitted between
two arcs or a line and arc as well. A comparison with Bezier fillets, shows that using the proposed method results in a
smoother curvature profile, higher feedrates and shorter cycle times.
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1. Introduction

Standard part programs processed by CNC controllers,
define toolpaths which are composed of several lines and
arcs [1]. At each line to line, line to arc or arc to arc transi-
tion, careful considerations are required to ensure that the
physical limits of the machine are not exceeded. For exam-
ple when the machine is moving at a constant feedrate, at
the point where two successive non-tangent linear moves
meet, there will be a sudden change in the velocity of the
participating joints. Therefore, the controller has to fore-
see these transition points and reduce the path velocity to
limit the side effects of a step change in the velocity. Sim-
ilarly at line to arc and arc to arc transitions, even when
the two moves are completely tangent, curvature discon-
tinuities have to be addressed. Any discontinuity in the
curvature results in a step change in acceleration and con-
sequently in a jerk spike which can have detrimental effects
on the quality of cut.

The same issue needs to be addressed in path planning
for mobile robots and also in highway and railway design.
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The problem can be explained in a more tangible way in
the context of wheeled vehicles. Imagine a car which is
being driven on a road. For moving on a straight line, the
angle of the front wheels with the chassis of the car needs
to be zero. However for turning on a circular bend with a
radius equal to 15 metres, for a typical car, the angle of the
front wheels has to be about 10 degrees. In a non-standard
road where a straight line segment is immediately followed
by a circular bend, the driver will have to change the angle
of the front wheels from zero to 10 degrees instantaneously
which is physically impossible. So in order to follow the
road, the car has to stop, reorient its front wheels and start
moving again [2]. To prevent cases like the given example,
smoothing curves like clothoids are used in highway and
railway design. The role of the smoothing curves is to
prevent sudden changes in the curvature and to eliminate
curvature discontinuities.

In the case of CNC machines, there are two modes
of operation known as Exact Stop Mode and Continu-
ous Mode [1]. In the Exact Stop Mode, discontinuities
in the toolpath do not make any difference in the overall
performance. The reason is that in this mode, the ma-
chine stops after each move and before starting the next
move. However in the Continuous Mode, in order to have a
jerk-limited smooth movement, planning a curvature con-
tinuous path without any discontinuities in curvature or
tangency is necessary.
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As mentioned before, the same problem has been stud-
ied for mobile robots and autonomous vehicles [2, 3, 4, 5].
However, CNC applications have an important additional
requirement that needs to be considered in path smooth-
ing. In these applications, the accuracy of the travelled
path has to be maintained. To satisfy this requirement,
the deviation introduced by the smoothing algorithm has
to be limited. In other words the maximum distance be-
tween the smoothed path and the original path should be
within a specified tolerance.

The rest of this paper is organized as follows. In sec-
tion 2, the related work is discussed and the gaps in the
literature which this paper is trying to fulfil are briefly ex-
plained. In section 3 the problem that this paper is trying
to solve is outlined using a sample part program. A short
introduction to clothoids is given in section 4. Section 5,
introduces biclothoid fillets which are the fillets used for
corner smoothing in this paper. Methods and algorithms
used for fitting biclothoid fillets at line to line, line to arc
or arc to arc transitions are explained in section 6. Sec-
tion 7 covers the methods used in this work for measuring
and limiting the maximum distance between the smoothed
path and the original path. Formulas for calculating the
maximum acceleration and jerk when moving on a clothoid
and the maximum permissible velocity are given in section
8. This section is followed by a case study in section 9.
In section 10, the proposed method is compared with the
method from [6]. Finally section 11, concludes the paper.

2. Related Work

Papers discussing the problem of path smoothing for
CNC machines can be divided into two main categories.
In the first group of papers, methods for finding smooth
splines that pass through a large number of input points
are proposed [7, 8, 9]. Spline fitting is used when the
toolpath is composed of a large number of small linear
segments (also known as micro-lines). The second group of
papers, discuss the problem of corner smoothing. Corner
smoothing is used when the moves generated by the CAD-
CAM software are longer (in comparison to micro-lines
which are better smoothed using splines) and can be either
lines or arc segments. This work falls in the latter category.

Several methods are proposed for corner smoothing in
the literature. Polynomial curve splines are used as tran-
sition curves in some works. Erkorkmaz et al. in [10],
use quintic splines composed of two or three quintic spline
segments as smooth transition curves. The choice between
two or three segments depends on the type of the servo
controllers used in the machine. To get near arc length
parameterisation, the authors of [10] use the method pro-
posed by Yang and Wang in [11]. Despite using the men-
tioned technique for near arc length parameterisation, ve-
locity discontinuities still exist in the generated spline [10]
which have to be resolved by using special interpolation
techniques [10, 12].

Yutkowitz in [13] uses two back to back quartic poly-
nomials per axis to round the corners. For each corner,
the curvature of the smoothing curve becomes maximum
at the middle of the fillet where the two quartic curves
join. In order to decrease feedrate fluctuations the value
of the maximum curvature for each corner is optimised so
that the polynomial parameter is close to the arc length.
In other words, the smoothing curve is nearly arc length
parameterised.

Beudaert et al. in [14] use cubic splines. They smooth
each joint separately by fitting a cubic spline to the po-
sition stream and then measure the resulting geometric
deviation. An optimisation algorithm tries to maximise
the feedrate while keeping the introduced error below a
specified tolerance.

Bezier curves are also used for corner smoothing. Yang
and Sukkarieh in [15] use two back to back cubic Bezier
curves to generate smooth transitions from a line to an-
other line at the corners. Their method is intended for
mobile robots and generates a continuous curvature path
with an upper bound limit on curvature. In the intended
application, the path deviation is not important and is not
taken into account.

Sencer et al. in [6] also use Bezier curves to smooth
line to line transitions. Instead of using two cubic Bezier
curves, one quintic Bezier curve is used. They have de-
vised a method to generate a smoothing curve with min-
imum curvature peak for any corner angle. They show
that by decreasing the maximum curvature of the transi-
tion curve, higher feedrates can be achieved. Since Bezier
curves are not arc length parameterised, a special interpo-
lation method has to be used in order to prevent feedrate
fluctuations [6, 15].

Bi et al. in [16] and [17] use a particular type of cu-
bic Bezier curves first introduced in [18]. In [18], Walton
and Meek, use cubic Bezier curves which normally have
four control points. However, they merge two of the con-
trol points and place them at the corner. This ensures
that the curvature profile of the Bezier curve has only one
extremum at the middle of the curve [18]. Walton and
Meek do not attempt to limit the deviation between the
smoothing Bezier curve and the original curve. Bi et al.
in [16] and [17], however, measure and limit the deviation
to make sure that it is bounded to a predefined value.

Fan et al. in [19] use two back to back quartic Bezier
curves to achieve G3 continuity. Each of the Bezier curves
has 5 control points and the two back to back curves share
one control point which leaves 9 control points to calcu-
late. In determining the control points, they minimise the
curvature variation energy (CVE) [19] in order to minimise
the cycle time and improve the smoothness.

B-spline curves are also used as path smoothing fillets.
Zhao et al. in [20] use cubic B-splines with 5 control points.
By dividing the B-spline into two cubic Bezier curves they
prove that the maximum curvature falls exactly in the mid-
dle of the B-spline. They limit the feedrate based on the
maximum curvature of the smoothing B-spline.
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Beudaert et al. in [21] also use cubic B-splines with 5
control points where the third control point is placed at
the corner. Since there are three points on each line of the
corner, the curvature at the beginning and at the end of
the smoothing curve is zero which matches the curvatures
of the comprising lines. They explain that the distance
between control points can be adjusted in order to min-
imise the machining time. However, they also give a rule
of thumb and state that if the distance between the first
control point and the corner is 1.4 to 1.75 times larger
than the distance between the second control point and
the corner, satisfying results in terms of machining time
can be achieved.

Tulsyan and Altintas in [22] and also Yang and Yuen in
[23] use quintic B-splines with 7 control points in order to
achieve G3 continuity. One of the 7 control points is placed
at the corner so that there are four control points on each
line of the corner. This arrangement results in zero curva-
ture and also a zero derivative of curvature at the begin-
ning and at the end of the smoothing curve. Their method
is designed for smoothing corners in a 5-axis milling ma-
chine. Tulsyan and Altintas in [22] use a septic B-spline
with 9 control points for smoothing the orientation.

Pythagorean-hodograph (PH) curves are another group
of curves used for corner smoothing. Shi et al. in [24] use
the method first introduced in [18]. They use a quintic
PH curve which has 6 control points. The second and
third control points are merged and also the fourth and
fifth control points are merged to ensure a single curva-
ture extremum on the curve. They extract an analytical
expression for the maximum curvature of the smoothing
curve.

Another method of corner smoothing proposed in [25]
and [26] by Tajima and Sencer, uses a single step solution.
It should be noted that in most of the algorithms for corner
smoothing, at first a smoothing curve is fitted to replace
the corner, and then the smoothed path is interpolated.
In contrast to the common method, Tajima and Sencer
propose smoothing the corner by directly calculating and
controlling the jerk, acceleration and velocity when the
toolpath is being interpolated. In [25] they explain their
algorithm for a 3-axis machine. Using the proposed algo-
rithm, the jerk of one of the joints is always at its maximum
to ensure that the smoothing time is minimised. In [26]
they extend their algorithm to a 5-axis case.

This paper, uses biclothoid fillets (two back to back
clothoids) as transition curves to smooth the corners and
eliminate discontinuities in the toolpath. Clothoids have
been used in path planning for mobile robots. Shin et al.
in [4], use three clothoids to connect every two successive
points while matching the tangency and curvature at both
ends. Since the intended application is path planning for
robots, the deviation between the original path and the
generated path is not limited [4]. Brezak and Petrovic in
[5], use two clothoids for corner smoothing. They study
both line to line and arc to line cases while always assuming
zero curvature at one end. The reason for this assumption

is that robots mainly move on straight lines. However, this
assumption is not valid for CNC machines.

Shahzadeh et al. in [7], use clothoids to generate a
G2-continuous clothoid spline with limited deviation from
the original toolpath for CNC applications. However, the
proposed method can only handle toolpaths that are sym-
metrical and G1-continuous. In other words, similar to the
other works referenced in this section, the method in [7],
cannot be used to smooth general line to arc or arc to arc
discontinuities.

Clothoids have a number of advantages over other curves
for corner smoothing which will be explained in the com-
ing sections of this paper. However, they have not been
widely used in CNC applications. The main concern for
using clothoids in CNC applications is the computation in-
tensity [15]. In order to interpolate a clothoid, calculation
of Fresnel integrals is necessary and unfortunately these
integrals do not have a closed form solution. Nevertheless,
Fresnel integrals can be accurately (with error smaller than
4× 10−8) estimated using a few rational polynomials [27].
A clothoid can also be interpolated using a look up table
in real time applications with limited CPU power [28]. Us-
ing either of the mentioned techniques, the computational
intensity issue can be resolved.

The main limitation of the works referenced above (ex-
cept for [4] and [5] which are not intended for CNC appli-
cations) is that they only discuss line to line transitions.
However, in practice, part programs are consisted of both
linear and helical (or arc) moves.

Another limitation when using polynomial curves, B-
splines or Bezier curves is that for these curves, the arc
length cannot be calculated using an analytical formula.
For these curves, the arc length can only be estimated by
integration [15, 24]. Not having an accurate arc length
results in feedrate fluctuations [29, 30, 31]. Special inter-
polators are needed to decrease the feedrate fluctuations
when using parametric curves. For example [9] and [32]
use one or more 9th degree polynomials as feedrate cor-
rection functions to compensate for the lack of arc length
parameterisation. Kinematic corner smoothing methods
proposed in [25, 26] have the same problem.

PH curves have the advantage that their arc length
can be calculated analytically for any value of the curve
parameter. However, despite the fact that PH curves have
an analytical arc length, they are not arc length parame-
terised. As a result again special interpolators are neces-
sary to process these curves [33, 34].

Finally in majority of the papers referenced above,
only maximum curvature is considered when calculating
the maximum permissible feedrate. Also in some papers,
in order to increase the feedrate, the maximum curvature
has been minimised. Nevertheless, in section 8 it will be
proved that for calculating the maximum permissible fee-
drate, the derivative of curvature (sharpness) is just as
important as the curvature itself.
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Figure 1: The toolpath generated by executing the part program in
listing 1.

3. Problem Statement

In this section, in order to explain the problem that this
work is trying to solve, a sample toolpath will be examined.
Consider the part program presented in listing 1 below.

Listing 1: The part program used for experiments in this paper. The
colours match those of figure 1 (the toolpath).

G90
F10000
G2X−10Y10R10 ( red )
G1Y50 ( black )
G2X0Y60R10 ( blue )
G2X0Y0R30.01 ( green )

The toolpath corresponding to this part program is
plotted in figure 1. This closed toolpath (OABCO in fig-
ure 1) starts from the origin and ends at the same point.
The colours in the figure match those specified in the G-
code program. It should be noted that in G-code language,
G1 commands, specify linear moves, while G2 commands
stand for clockwise circular arc moves [35].

The toolpath in figure 1 may look very smooth to the
eye. However there are three discontinuities in this tool-
path. The first discontinuity is at point A where the tran-
sition is made from the red arc to the black line. The
curvature of the red arc is 0.1 mm−1 (the radius of the arc
is 10 mm thus the curvature is 1

10 mm ) while the curvature
of the black line is zero. As a result there is a curvature
discontinuity at point A where these two moves meet. A
similar discontinuity exists at point B between the black
line and the blue arc. However the worst case of disconti-
nuity happens at point C (the transition from the blue arc
to the green arc following it). Not only the radius changes
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Figure 2: Acceleration of the X and Y axes when moving on the
toolpath given in figure 1. A, B and C marked on the plot correspond
to the same points in figure 1.

from 10 mm to 30.01 mm, but also there is a 1.48◦ angle
between the two arcs.

The part program from listing 1 was given to a 3 axis
CNC laser cutting machine controlled by an AMC5 ANCA
Motion CNC controller [36]. The jerk limit was set to
200000 mm

s3 and the acceleration limit was 9800 mm
s2 (1.0g).

In the first experiment, transition jerk limiting function-
ality was disabled on the machine. The resulting acceler-
ation profiles for axes X and Y are plotted in figure 2.

The plots in figure 2 show that at points A and B
on the plot, which correspond to the points with the same
names in figure 1, the acceleration of theX axis has sudden
changes. The cause of this jump in acceleration, is the
curvature discontinuity when going from an arc to a line
(at point A), or when going from a line to an arc (point
B). At point C, due to discontinuity in both tangent angle
and curvature, a bigger acceleration jump can be observed
(for the Y axis).

The sudden changes in the acceleration translate to
big jerk spikes as the plot in figure 3 shows. While the
jerk limits for the axes X and Y of the machine were set
to 200000 mm

s3 , because of the discontinuities in curvature
and in tangency, huge jerk spikes greater than 10 times
the limit are generated. These jerk spikes result in severe
vibrations on the machine. In the experiment, clunking
sounds could be heard at points A, B and C of the toolpath
(refer to figure 1).

Modern CNC controllers have a mechanism to prevent
these jerk spikes. The method that is currently in use
in the industry is to slow down at these points so that
the generated jerk is within the limits that the machine
can deliver. In the second experiment, the transition jerk
limiting functionality was turned on and the same tool-
path was given to the machine. This time the jerk spikes
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Figure 3: Jerk of the X and Y axes when moving on the toolpath
given in figure 1.
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Figure 4: Path velocity when moving on the toolpath given in figure
1. The machine has to slow down before the transition points to
limit the magnitude of the jerk spikes.

were not observed and the machine seemed to be moving
smoothly with no unusual noises. However there was a
considerable increase in the cycle time. The cycle time in-
creased by 20% from 1s to 1.2s. Cycle time increase can
be even more prominent in cases where there are many
discontinuities in the toolpath. The feedrate profile when
the transition jerk limiting functionality is turned on, is
depicted in figure 4.

Part programs generated by CAD-CAM software, are
rarely curvature continuous and as a result cases like the
sample toolpath portrayed in figure 1 are common in the

industry. Consequently to prevent the machine from slow-
ing down at the points of discontinuity or imposing se-
vere jerk spikes on the axes, an algorithm to convert any
given toolpath to a smooth curvature-continuous toolpath
is needed. Ideally the smoothed toolpath should have a
number of characteristics:

a. G2-continuity: The generated toolpath should be
G2-continuous. In other words there should be no
discontinuities in the tangency or the curvature of
the toolpath at any point.

b. Bounded maximum error: The maximum distance
between the smoothed toolpath and the original tool-
path, should not exceed a specified tolerance. A
machine operator or a G-code programmer should
be able to set this tolerance to any desirably small
value.

c. Analytical arc length formula: Arc length of the path
at any point should be analytically formulated. This
property is essential for speed profile generation and
for preventing feedrate fluctuations [37].

d. Arc length parameterisation: Having the travelled
arc length, next point on the curve should be easily
calculable. This will facilitate interpolation calcula-
tions.

e. Minimum curvature change: It will be proved in fol-
lowing sections that the centripetal jerk is propor-
tional to the rate of change of curvature (known as
sharpness). Consequently, having a smaller sharp-
ness will permit higher feedrates without exceeding
jerk limits.

This paper proposes a method which satisfies all of the
above criteria. It will be demonstrated that the generated
path can be processed by the machine with a higher av-
erage feedrate without violating jerk or acceleration limits
of the machine.

4. Clothoids

A clothoid is a curve whose curvature is a linear func-
tion of its arc length. These curves can be used to provide
a smooth transition between two curves with different cur-
vatures. In this section, an easy to understand representa-
tion of clothoids will be given. Notation used to describe
a clothoid is taken from [5].

In a clothoid, according to the definition, the curvature
can be expressed as equation 1 where κ0 = 1/r0 is the
initial curvature, c is the rate of change of curvature known
as sharpness, and s is the arc length of the clothoid[5].

κ(s) = κ0 + cs (1)

All other clothoid equations are derived from equation
1. Curvature by definition is the derivative of the tangent
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angle (θ(s)) with respect to the arc length (s). Thus, the
equation for θ(s) can be derived by integrating equation 1
as stated in equation 2[5].

θ(s) = θ0 +

∫ s

0

κ(t) dt = θ0 + κ0s+
1

2
cs2 (2)

In equation 2, θ(s) is the angle that a tangent to the
clothoid at arc length equal to s, makes with the positive
direction of the X axis and θ0 is the tangent angle at the
start point. Having the tangent angle θ(s) from equation
2, the equation for unit tangent vector can be derived as
in equation 3 in which, î and ĵ are the unit vectors co-
directional with X and Y axes respectively.

T̂(s) = cos(θ(s))̂i + sin(θ(s))̂j

= cos(θ0 + κ0s+
1

2
cs2)̂i

+ sin(θ0 + κ0s+
1

2
cs2)̂j (3)

By integrating the right hand side of equation 3, co-
ordinates of any point on a clothoid can be calculated as
given in equations 4, 5 and 6[5]:

−−→
r(s) = x(s)̂i + y(s)̂j (4)

x(s) = x0 +

∫ s

0

cos(θ0 + κ0t+
1

2
ct2) dt (5)

y(s) = y0 +

∫ s

0

sin(θ0 + κ0t+
1

2
ct2) dt (6)

In these equations,
−−→
r(s) is the position vector to the

end point (or any point corresponding to arc length equal
to s) and (x0, y0) are the coordinates of the start point of
the clothoid segment. The definition below borrowed from
[4] is used to simplify the descriptions in the rest of this
paper.

Definition 1. A posture like P (x, y, κ, θ) is a collection of
four parameters which specify the position (x, y), curvature
(κ) and tangent angle (θ) at a particular point on a shape.

Whenever the start posture of a clothoid is given as
(P0 = (x0, y0, κ0, θ0)), and its arc length (s) and sharpness
(c) are also given, the end posture of the clothoid (Pe =
(xe, ye, κe, θe)) can be calculated using equations 1, 2, 5
and 6.

5. Biclothoids

Definition 2. A biclothoid is a curve consisting of two
back to back connected clothoids where the second clothoid’s
sharpness is the opposite of the sharpness of the first one.

Equations 7 and 8 reflect definition 2 above:

c1 = −c2 (7)

s1 + s2 = sBC (8)

The biclothoid is consisted of two clothoids, namely
clothoid 1 and clothoid 2. In these equations, c1 and c2 are
the sharpness values and s1 and s2 are the arc lengths of
clothoids 1 and 2 respectively. Also sBC stands for the arc
length of the biclothoid. Using equations 1 and 2 for each
of the back to back connected clothoids that constitute a
biclothoid and combining them with 7, equations 9 and
10 below can be extracted for the curvature and tangent
angle at the end of a biclothoid.

κe = κ0 + c1(s1 − s2) (9)

θe = θ0 + κ0(s1 + s2) +
1

2
c1(s1

2 − s22 + 2s1s2) (10)

Combining equations 7 to 10 and solving for s1, s2, c1
and c2 gives the equations below.

∆θ = θe − θ0

SQ = ∆θ2 −∆θsBC(κ0 + κe) +
s2BC

2
(κ0

2 + κe
2)

s1 =
∆θ − κesBC −

√
SQ

κ0 − κe
(11)

s2 = sBC − s1 (12)

c1 =
κe − κ0
s1 − s2

(13)

c2 = −c1 (14)

According to equations 11, 12, 13 and 14, a biclothoid
can be fully determined if its total length (sBC), start
posture (P0 = (x0, y0, κ0, θ0)) and curvature and angle at
its end point (κe, θe) are given. After determining the
biclothoid, coordinates of its end point can be calculated
easily by applying equations 5 and 6 to each of the back
to back clothoids.

As an example, assume that x0 = 0, y0 = 0, κ0 = 0.1,
θ0 = π

4 , are given as the start posture of the biclothoid and
κe = 0.2, θe = 3π

4 are given for the curvature and angle at
the end of the biclothoid, and the length of the biclothoid
is set to sBC = 10mm. Using equations 11, 12, 13 and 14
will give c1 = 0.012 1

mm2 , c2 = −0.012 1
mm2 , s1 = 9.34mm

and s2 = 0.66mm. Consequently equations 5 and 6 will
give (0.88, 8.95) as the end point of the biclothoid.

6. Fitting Biclothoids

The problem that this paper is trying to solve is to fit
a biclothoid between two successive shapes like Q1(t)and
Q2(t) where (0 <= t <= 1). It is assumed that Q1 and Q2
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Algorithm 1: The algorithm used for finding a bi-
clothoid that starts at Q1(t1

∗), ends at a point on Q2

and has G2-continuity with both shapes.

Input : (Q1, Q2, t1
∗): Q1 and Q2 define the first

and the second shapes respectively. These
shapes can be either two lines, two arcs,
or an arc and a line, t1

∗: Specifies a point
on Q1 where the biclothoid starts.

Output: (c1, c2, s1, s2): The biclothoid fillet that
starts at Q1(t1

∗).

1 Function Biclothoid (Q1, Q2, t1
∗)

2 ε← 1e− 5
3 (x0

∗, y0
∗, κ0

∗, θ0
∗)← Q1(t1

∗)
4 sBC ← Length of Q2

5 t2 ← (1.0− t1∗)× (Length of Q1)/(Length of Q2)

6 repeat
7 (xe

∗, ye
∗, κe

∗, θe
∗)← Q2(t2)

8 Substitute x0
∗, y0

∗, κ0
∗, θ0

∗, κe
∗, θe

∗ and
sBC in equations 11, 12, 13 and 14 and
calculate s1, s2, c1 and c2

9 Calculate xe and ye using equations 5 and 6
10 f1 ← xe − xe∗
11 f2 ← ye − ye∗
12 Repeat steps 7 to 11 using sBC + ε and t2 + ε

and calculate partial derivatives:

13
∂f1
∂sBC

← f1(sBC+ε,t2)−f1(sBC ,t2)
ε

14
∂f2
∂sBC

← f2(sBC+ε,t2)−f2(sBC ,t2)
ε

15
∂f1
∂t2
← f1(sBC ,t2+ε)−f1(sBC ,t2)

ε

16
∂f2
∂t2
← f2(sBC ,t2+ε)−f2(sBC ,t2)

ε

17 J ←

[
∂f1
∂sBC

∂f1
∂t2

∂f2
∂sBC

∂f2
∂t2

]
18

[
sBC
t2

]
← J−1

[
f1(sBC , t2)
f2(sBC , t2)

]
19 until Abs(f1) < ε and Abs(f2) < ε
20 return (c1, c2, s1, s2)

21 end

are connected with only G0-continuity or G1-continuity.
Therefore, there is a tangent discontinuity or a curvature
discontinuity at their junction point. Q1 and Q2 can be
either both lines, or both arcs or one arc and one line.

The start point of the biclothoid will be on Q1 and
its end point will reside on Q2. The biclothoid has G2-
continuity with both Q1 and Q2 which means that the
tangent angle and the curvature of the biclothoid at its
start point are equal to the tangent angle and curvature
of Q1. The same is true for the end point of the biclothoid
where it joins Q2 with G2-continuity. Without loss of gen-
erality it is assumed that the arc length of Q2 is greater
than or equal to the arc length of Q1 and the curvature of
Q2 is smaller than or equal to the curvature of Q1. These

two assumptions do not add any restrictions to the prob-
lem: if Q1 is longer than Q2, then part of Q1 can be cut
away to make the lengths equal, and if Q2 has a greater
curvature than Q1, the two shapes can be simply swapped.

In the case where both shapes are line segments, ana-
lytical solutions for fitting biclothoids exist. An analytic
algorithm for fitting biclothoids when both Q1 and Q2 are
line segments is proposed in [5]. However, when one or
both shapes are arcs, a different method is needed. Algo-
rithm 1 is used to fit a biclothoid between a given point on
Q1 and Q2. The algorithm uses Newton method to first
find the length of the biclothoid (sBC) and the parameter
value (t2) for Q2 at the point where the biclothoid and
Q2 join. It then uses the calculated values for sBC and t2
to determine other parameters of the biclothoid. For ex-
ample Biclothoid(Q1, Q2, 0.5) returns the biclothoid that
starts at the middle of Q1 and joins Q1 and Q2 with curvature
continuity.

7. Limiting the Deviation

In this section the method used for measuring and limiting
the deviation between the fitted curve and the original toolpath
is explained.

As mentioned earlier, in a CNC application, having a high
accuracy is crucial. Fitting biclothoids at discontinuity points
results in a new toolpath which will have some distance with
the original toolpath. In order to satisfy the accuracy require-
ments, the distance between each of the fitted biclothoids and
the original toolpath has to be limited to a specified tolerance.
The first step in limiting this deviation is measuring it. Next
subsection explains the method used for measuring the devia-
tion.

7.1. Measuring the Deviation

The maximum deviation of the fitted biclothoid from the
original path can be defined as directed Hausdorff distance.
Directed Hausdorff distance from curve U to curve V is defined
in equation 15 below [38]. Hausdorff distance is the maximum
distance between any point on the curve U from its closest
point on curve V .

H(U, V ) = max
∀A∈U

min
∀B∈V

||A,B|| (15)

In [5], it has been proved that when both shapes are lines,
the fillet will be symmetrical in respect to the bisector of the
corner. In this case, the distance between the two paths can
be easily calculated by finding the distance between the corner
and the middle point of the fillet[5]. However when one or both
of the shapes are arcs, in order to calculate the accurate Haus-
dorff distance, two nested numerical solvers should be used. In
figure 5, for each point like A1 on the original toolpath (curve
U), the closest point on the modified toolpath (V ), is a point
like B1. This point can be found using a numerical method
like false position minimisation algorithm. This minimum dis-
tance is represented in equation 15 as min

∀B∈V
||A,B||. For every

point on U , the minimum distance with V can be calculated
as explained. Figure 6, shows these minimum values for 100
points along curve U in figure 5. Maximum deviation between
U and V is the largest minimum distance in figure 6. False posi-
tion maximisation algorithm or any other numerical solver can
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Figure 5: Measuring the distance between the original toolpath (U :
black and blue arcs) and the fitted biclothoid (V : red curve). A1 and
A2 are arbitrary points on U and B1 and B2 are the closest points
to them which reside on V . Maximum distance takes place at Am

which is 1.59mm away from Bm. Bm is the closest point on V to
Am.

0 20 40 60 80 100

0

0.5

1

1.5

2

||A1, B1||=0.66 mm

||Am, Bm||=1.59 mm

||A2, B2||=0.3 mm

Arc Length (%)

D
ev

ia
ti

on
(m
m

)

Figure 6: Deviation between the original toolpath and the biclothoid
in figure 5. A1, B1, A2, B2, Am and Bm correspond to the same
points in figure 5. The horizontal axis, shows the arc length as a
percentage of the total length of the original toolpath and the vertical
axis shows the deviation.

again be used to find the maximum. In figure 5, the maximum
distance happens at point Am on U . The closest point on V
to Am is Bm and ||Am, Bm|| which is the maximum deviation
between U and V , equals 1.59 mm.

7.2. Decreasing the deviation

If it turns out that the distance between the fitted bi-
clothoid and the original toolpath is greater than the specified
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Figure 7: Limiting the deviation. By moving the start point of the
biclothoid from S1 to S2, maximum distance between the two paths
decreases from 1.59mm to 0.63mm.

tolerance, in order to maintain the cutting accuracy, the dis-
tance has to be reduced. In order to reduce the distance, it
is sufficient to move the start point of the biclothoid closer to
the point of discontinuity on the original toolpath. Figure 7,
shows an example. The point of discontinuity in the original
toolpath is marked as D. When the biclothoid starts at point
S1, the maximum deviation is 1.59 mm. When the start point
of the biclothoid moves to S2 which is closer to D, maximum
deviation decreases to 0.63 mm.

Again if both shapes are lines, analytical methods from [5]
can be used to easily find a solution which satisfies tolerance
requirements. However for the cases that one of the shapes
is an arc, algorithm 2 is used to limit the deviation. This
algorithm uses false position method to find the start point
of the biclothoid so that the deviation is limited to the given
tolerance. In practice, in most of the cases the deviation is so
small that no re-fitting is required.

7.3. Robustness and Speed

In order to assess the robustness and speed of the proposed
method, an extensive test was carried out. For line to line
corners, angles from 0.00001 degrees to 150.00000 degrees with
steps of 0.000001 degrees were examined. Also a wide range
of line to arc and arc to arc cases, with arc radii ranging from
0.1mm to 1000mm and angles ranging from 0 to 150 degrees
were tested. Overall, more than 10 million different cases were
tested and the algorithm converged in all of the tests. Six of
these cases are portrayed in figure 8 to show some examples of
the different cases that have been examined.

Using a computer with a dual-core CPU running at a clock
rate of 2.4 GHz, the average fitting time for line to line corners
was only 5 microseconds. For line to arc and arc to arc cases
the average fitting time was 42 microseconds. Although the
fillet fitting time for arc to arc transitions is longer than the
simpler case of line to line transitions, it is still small enough
for using in real time applications.
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Algorithm 2: The algorithm used for finding a bi-
clothoid that starts at a point on Q1, ends at a point
on Q2 and has G2-continuity with both shapes so
that the deviation between the biclothoid and the
toolpath composed of Q1 and Q2 is smaller than tol.

Input : (Q1, Q2, tol): Q1 and Q2 define the first
shape and the second shape respectively.
These shapes can be either two lines, two
arcs, or an arc and a line, tol: The
maximum permissible distance between
the fitted biclothoid and the original
toolpath consisted of Q1 and Q2.

Output: (c1, c2, s1, s2): The biclothoid fillet with
limited deviation from the original
toolpath.

1 Function BiclothoidWithTolerance (Q1, Q2, tol)

2 (c1, c2, s1, s2)← Biclothoid(Q1, Q2, 0.0)
3 d← distance between Q1, Q2 and the biclothoid

(c1, c2, s1, s2)
4 if (d < tol) then
5 return (c1, c2, s1, s2)
6 end
7 ε← 0.01× tol
8 t1 ← 0.0
9 t2 ← 1.0

10 y1 ← d− tol
11 y2 ← 0.0
12 repeat
13 t3 = t1y2−t2y1

y2−y1
14 (c1, c2, s1, s2)← Biclothoid(Q1, Q2, t3)
15 d← distance between Q1, Q2 and the

biclothoid (c1, c2, s1, s2)
16 y3 ← d− tol
17 if (y3 × y1 > 0) then
18 y1 = y3
19 t1 = t3
20 else
21 y2 = y3
22 t2 = t3
23 end

24 until (y3 < ε)
25 return (c1, c2, s1, s2)

26 end

0 2 4

−1

0

1

2

(a)

0 2 4
−2

−1

0

1

2

(b)

0 2 4

−1

0

1

(c)

0 2 4

−1

0

1

(d)

0 2 4

−1

0

1

(e)

0 2 4

−1

0

1

(f)

Figure 8: Examples of biclothoid fillets. In all 6 cases, the deviation
between the original toolpath and the fillet is limited to 0.5 mm.
(a) Arc to arc with acute angle (b) Arc to arc with acute angle and
change of curvature sign (c) Line to line with acute angle (d) Arc to
arc with obtuse angle (e) Line to line with obtuse angle (f) Arc to
line with obtuse angle.

For fitting time measurements, an ordinary desktop com-
puter was used. Nevertheless, new generations of CNC con-
trollers are equipped with powerful processors on par with the
one that was used for the measurements. For example, Sinu-
merik 840D manufactured by Siemens, takes advantage of a
multi-core CPU with a clock rate up to 2.4 GHz [39]. As an-
other example, the CNC controller that was used for machining
trials reported in section 9, has a quad-core CPU with a clock
frequency of 2.3 GHz [36]. It should also be noted that the
fitting algorithm needs to run only once for each discontinuity.
Therefore, the computational burden of the smoothing algo-
rithm will be minimal.

8. Maximum Velocity On Biclothoid Fillets

In this section, the maximum permissible velocity when
moving on a clothoid will be calculated. It should be noted
that moving on any path which is not linear, like a circle or
a clothoid, requires non-zero acceleration and jerk to be ap-
plied by the axes that are participating in the move. Assuming
constant tangential velocity (path velocity), in the case of a
circle, it can be proved that the maximum acceleration and
jerk of each of the participating axes, can be calculated from
equations 16 and 17 respectively.

amax =
v2

r
= κ× v2 (16)

jmax =
v3

r2
= κ2 × v3 (17)
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In these equations, v is the path velocity, κ = 1
r

denotes the
curvature and amax and jmax, show the maximum acceleration
and jerk that will be generated on each of the participating
axes respectively. These equations show that even when the
path velocity (v) is fixed, the motors which are moving the
machine, will have to apply potentially large acceleration and
jerk values in order to move the machine on a circle. Since the
maximum acceleration and jerk that a motor can generate are
limited, path velocity should be limited accordingly. Equations
18 and 19 can be used to calculate the maximum velocity for a
full circle.

v1 =
√
alim × r =

√
alim
κ

(18)

v2 = 3
√
jlim × r2 =

3

√
jlim
κ2

(19)

The maximum path velocity that can be applied will be
min(v1, v2) where v1 and v2 are calculated using equations 18
and 19 respectively. In these equations, alim is the acceleration
limit and jlim denotes the jerk limit. In the rest of this section,
similar equations will be derived for clothoids. Since a circular
arc is a special case of a clothoid, the equations presented above
will be proved in the process as well.

Starting from equation 5, the velocity of the X axis can be
derived as equation 20.

vx(s) =
dx(s)

dt
=
ds

dt
× dx(s)

ds

=v × cos(θ0 + κ0s+
1

2
cs2) (20)

In this equation, vx(s) denotes the velocity of the X axis, v
is the path velocity, and θ0, κ0, c and s have the same meaning
as in equation 5.

Assuming constant tangential velocity, taking the deriva-
tive of equation 20, will give the acceleration of the X axis in
equation 21.

ax(s) =
dvx(s)

dt
=
ds

dt
× dvx(s)

ds

=− v2 × (cs+ κ0)× sin(θ0 + κ0s+
1

2
cs2) (21)

Finally taking the derivative once again, gives equation 22
for the jerk of the X axis when moving on a clothoid.

jx(s) =
dax(s)

dt
=
ds

dt
× dax(s)

ds

=− v3 × c× sin(θ0 + κ0s+
1

2
cs2)

−v3 × (cs+ κ0)2 × cos(θ0 + κ0s+
1

2
cs2) (22)

Similar equations can be extracted for the Y axis. The
equation for jerk in 22 has two components. The first com-
ponent (−v3 × c × sin(θ0 + κ0s + 1

2
cs2)) makes a right angle

with the unit tangent vector and is known as centripetal jerk
[40, 41]. It is evident that this component is directly propor-
tional to the derivative of curvature (sharpness) denoted by c
in the equation.

In equations 21 and 22, The maximum values for ax and jx
depend on several factors. In order to simplify the equations

and derive a limit that works in all situations, a clothoid which
covers 360 degrees (like a full circle but with potentially vari-
able radius), and its curvature varies from κ0 to κe = cs + κ0

with a maximum curvature of κmax = max(κ0, κe) can be as-
sumed. Using this assumption, the maximum of the sine and
cosine terms will become 1. In this case, maximum accelera-
tion and jerk values can be calculated using equations 23 and
24 respectively.

amax = κmax × v2 (23)

jmax =
√
c2 + κmax

4 × v3 (24)

Finally, the maximum path velocity that can be applied to
ensure that the acceleration and jerk limits are not exceeded
can be calculated from equations 25 to 27.

v1 =

√
alim
κmax

(25)

v2 = 3

√
jlim√

c2 + κmax
4

(26)

v = min(v1, v2) (27)

It is evident that equations 18 and 19 are special cases of
equations 25 and 26 when c = 0 and κmax = κ. This reflects
the fact that circular arcs are special cases of clothoids.

9. Case Study

In this section, the example given in section 3 is processed
and three biclothoids are fitted to eliminate the discontinuities.
The smoothed toolpath is plotted in figure 9. The introduced
deviation is very small (100 microns) and consequently it is
not easy to distinguish between the original toolpath and the
smoothed toolpath in the plot. To show the deviation, bi-
clothoids and transition points are portrayed in three magni-
fied boxes in figure 9. In order to better highlight how clothoids
act as transition curves between two arcs and between a line
and an arc, the curvature profile of the smoothed toolpath is
also plotted in figure 10. In figure 10, the clothoids are charac-
terised by their linear curvature profiles, while the arcs can be
distinguished by their constant curvature.

Table 1 shows the data for the three fitted biclothoids.
The maximum feedrate value in the table is calculated using
equations 25 to 27 assuming jmax = 200000mm

s3
and amax =

9800mm
s2

for jerk and acceleration limits respectively. As long as
the feedrate is limited to these values, the acceleration and jerk
when the biclothoid move is being processed, will not exceed
the limits.

The smoothed toolpath was given to an ANCA Motion
AMC5 CNC controller [36] on a laser cutting machine (fig-
ure 11). Figure 12 shows the path velocity. Unlike the non-
smoothed case in figure 4, the machine can maintain a high
feedrate when cutting the smoothed toolpath.

Figure 13 showing the acceleration of the X and Y axes
exhibits no step changes in acceleration. This is different from
figure 2 where sudden changes in the acceleration are visible.
Similarly looking at the jerk profile in 14, no jerk spikes can be
seen.

Two pictures of the cut results are given in figure 15. The
part on the top was cut without using the smoothing fillets,
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Figure 9: Smoothed toolpath (red curve) versus the original toolpath
(blue curve). Discontinuities at points A, B and C are smoothed
by biclothoids S1S2, S3S4 and S5S6 respectively. These three bi-
clothoids are magnified in the figure and their specifications are given
in table 1.

Table 1: Biclothoids specifications. For maximum feedrate calcula-
tions, jmax = 200000mm

s3
and amax = 9800mm

s2
were used as the

jerk and acceleration limits respectively.

Biclothoid Sharpness
Maximum
Curvature

Maximum
Feedrate

(c) (κmax) (fmax)

S1S2 0.016 1
mm2 0.124 1

mm
12486 mm

min

S3S4 0.016 1
mm2 0.124 1

mm
12486 mm

min

S5S6 0.009 1
mm2 0.116 1

mm
13871 mm

min

while the part at the bottom was cut using the proposed bi-
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Figure 10: The curvature profile of the smoothed toolpath. The
points marked on the plot correspond to the points with the same
name in figure 9.

Figure 11: The CNC machine used for evaluating the proposed
method.

clothoid fillets. In the top picture from figure 15, two burning
marks are visible. These two points are at the same position
as points B and C in figure 1. As explained before, without
using the smoothing fillets, machine has to slow down at these
two points (figure 4 shows that the feedrate drops at these two
points) and this results in a longer exposure to laser and con-
sequently in higher temperatures and burning. As the picture
at the bottom of figure 15 shows, there will be no burning
marks when the proposed fillets are used. The reason is that
since there are no curvature or tangency discontinuities in the
smoothed toolpath, the machine can cut the part without slow-
ing down at any point. The experiment proves that using the
proposed method improves both the cycle time and the quality
of cut.

10. Comparison With Bezier Fillets

Using Bezier fillets for path smoothing in CNC applications
is proposed in several works [6, 15, 16, 17]. Sencer et al. in [6],
developed an algorithm to generate optimised Bezier curves in
order to achieve the highest feedrate while adhering to motion
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Figure 12: Path velocity when moving on the smoothed toolpath
given in figure 9. The machine does not slow down at transitions
and can maintain a high speed.
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Figure 13: Acceleration of the X and Y axes when moving on the
smoothed toolpath given in figure 9. There are no step changes in
the acceleration.

limits. In this section, biclothoid fillets are compared with the
optimised Bezier curves proposed in [6] to see which method
gives higher feedrates and shorter cycle times. Two sample
toolpaths, one simple and one more complex, will be analysed
in this section.

10.1. Case 1

The method proposed in [6] can only be applied to line to
line transitions. Therefore, for the first comparison case, a sim-
ple toolpath consisted of two linear moves making a 150 degree
angle at their intersection is considered. The original toolpath,
the biclothoid fillet and the optimised Bezier curve are plotted
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Figure 14: Jerk of the X and Y axis when moving on the toolpath
given in figure 9. Jerk is limited within the specified values.

Table 2: Comparison between a biclothoid fillet and a Bezier fillet
for the same corner (figure 16). For maximum feedrate calculations,
jmax = 200000mm

s3
and amax = 9800mm

s2
were used as the jerk and

acceleration limits respectively.

Fillet
Type

Length
Maximum
Curvature

Maximum
Sharpness

Maximum
Feedrate

Bi-
clothoid

2.22 mm 0.47 1
mm

0.42 1
mm2 4489 mm

min

Bezier 1.71 mm 0.36 1
mm

2.09 1
mm2 2744 mm

min

in figure 16. The two fillets look very similar and actually can-
not be distinguished in the figure. However their curvature and
sharpness profiles, plotted in figure 17 look completely differ-
ent.

Some of the differences between the two fillets, identified by
analysing figures 16 and 17 are summarised in table 2. Accord-
ing to the table, the length of the biclothoid fillet is 2.22 mm,
while the Bezier fillet is shorter and is only 1.71 mm long.
Maximum curvature for the biclothoid fillet is also higher than
the maximum curvature of the Bezier fillet (0.47 1

mm
for the

biclothoid and 0.36 1
mm

for the Bezier fillet). However, the
maximum derivative of curvature (plotted at the bottom of
figure 17) is much smaller for the biclothoid fillet (Maximum
sharpness is 0.42 1

mm2 for the biclothoid fillet and 2.09 1
mm2

for the Bezier curve).
Using the curvature profile and equations 25 to 27 from

section 8, the maximum permissible feedrate for each fillet can
be calculated. The calculated values are given in table 2. The
maximum feedrate that can be applied on the biclothoid fil-
let without exceeding acceleration and jerk limits is 4489 mm

min

while the highest permissible feedrate on the Bezier fillet is only
2744 mm

min
. Taking the length difference between the two curves

into account, for this particular line to line transition, using a
biclothoid fillet instead of a Bezier fillet can improve the cycle
time by 20%.
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(a) The above part was cut without using smoothing fillets.

(b) The same part was cut using the proposed method for smooth-
ing the corners.

Figure 15: (a) Cut result without using biclothoid fillets: burning
marks are created at the points that the machine has to slow down.
(b) Cut result using the proposed method: the cut quality has im-
proved.
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Figure 16: A simple toolpath consisted of two lines which make
a 150◦ angle (black), a biclothoid fillet (blue) and a Bezier fillet
(red) are plotted. The two fillets look very similar. However their
curvature and sharpness profiles in figure 17 are completely different.

10.2. Case 2

For the second comparison case, the toolpath from figure 1
is smoothed using Bezier fillets and the results are compared
with the same toolpath smoothed with biclothoid fillets. Since
Bezier fillets can only be used for line to line transitions, as the
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Figure 17: (Top) Curvature profiles of the biclothoid fillet (blue) and
the Bezier fillet (red) in figure 16. (Bottom) Sharpness profile of the
biclothoid fillet (blue) and the Bezier fillet (red) in figure 16.

first step, the given toolpath has to be converted to a series
of line segments. In order to approximate the toolpath using
line segments, subdivision algorithm from [42] is used. The
number of lines for approximating the toolpath depends on the
acceptable error tolerance. In order to achieve a 100 micron
tolerance, the three arcs in figure 1 have to be replaced with at
least 31 line segments.

After converting the original toolpath to a purely linear
toolpath, the number of discontinuities increases from 3 to 31.
Consequently 31 Bezier fillets are needed to smooth the tool-
path. Figure 18 shows the resulting smoothed toolpath. The
curvature profile of the smoothed toolpath is given in figure 19
as well.

A careful comparison between figures 18 and 9 shows that
biclothoid fillets give a smoother toolpath than Bezier fillets.
The difference is more obvious when the corresponding curva-
ture profiles in figures 19 and 10 are compared. Figure 19 shows
that there are many fluctuations in the curvature profile when
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Figure 18: In order to use Bezier fillets, at first the toolpath has to
be approximated by line segments. For a 0.1mm tolerance, 31 line
segments are needed. Afterwards, 31 Bezier fillets should be fitted
to smooth the toolpath. In this figure, the green dashed curve is
the original toolpath (from figure 1), the blue curve shows the line
segments which approximate the original toolpath and the red curves
are the Bezier fillets. Compare this figure with figure 9 which shows
the same toolpath smoothed using biclothoid fillets.

Bezier fillets are fitted. The reason is that while only three
biclothoid fillets are enough to smooth the discontinuities of
the original toolpath, to get the same result, 31 Bezier fillets
have to be used. Furthermore, since Bezier fillets can only be
fitted between two lines, the curvature has to drop to zero at
both ends of the fillet. This is not the case for biclothoid fillets
which can be fitted between two arcs, or a line and an arc as
well.

One other important difference between the curvature pro-
files is that according to table 1, the maximum sharpness when
using biclothoid fillets is only 0.016 1

mm2 . In comparison, when
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Figure 19: Curvature profile for the smoothed toolpath portrayed
in figure 18. Comparing figure 10 with this plot, shows that using
biclothoid fillets results in a much smoother curvature profile.
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Figure 20: Path velocity when moving on the toolpath given in figure
18. The machine has to slow down on the Bezier fillets and the cycle
time increases in comparison to the case where Biclothoid fillets were
used (figure 12).

Bezier fillets are used, the maximum derivative of curvature
(maximum slope in figure 19) is 0.35 1

mm2 which is more than
20 times higher than the maximum sharpness of biclothoid fil-
lets. Higher sharpness values will result in lower maximum
feedrates as figure 20 shows.

Figure 20 portrays the feedrate profile when the smoothed
toolpath in figure 18 is processed. The plot shows that the
machine has to slow down on the fillets in order to adhere to
the jerk and acceleration limits. Consequently the cycle time
increases to 1.32s, which is 25% longer than the case where
biclothoid fillets are used (compare with figure 12).

The difference between biclothoid fillets and Bezier fillets
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Table 3: Comparison between biclothoid fillets and Bezier fillets for
smoothing the toolpath from figure 1 with two different tolerance
values. When the tolerance gets tighter, a larger number of Bezier
fillets have to be used and the cycle time increases significantly. Bi-
clothoid fillets on the contrary, show a good performance at smaller
tolerance values.

Fillet type Tolerance
Number of

fillets
Cycle time

Biclothoid 0.1mm 3 1.048s

Biclothoid 0.01mm 3 1.053s

Bezier 0.1mm 31 1.322s

Bezier 0.01mm 96 1.723s

becomes more prominent at tighter tolerance settings. Table
3 compares Bezier and biclothoid fillets when used to smooth
the toolpath from figure 1 at two different tolerance settings.
When the tolerance is set to 10 microns, 96 Bezier fillets will
be needed and the cycle time increases to 1.72s. For achieving
the same tolerance, only three biclothoid fillets will suffice and
the cycle time will drop to 1.05s. In this scenario, the cycle
time that Bezier fillets give is 63% longer than the case where
biclothoid fillets are used.

11. Conclusion and Future Work

A method for smoothing corners using biclothoid fillets was
presented. The proposed method can be used to smooth out
discontinuities in curvature and in tangency for line to line, line
to arc, and arc to arc transitions. To the authors’ knowledge
this is the first method that can be applied to arc to arc and
line to arc corners in addition to line to line transitions.

For smoothing line to line transitions, analytical solutions
have been developed. However for transitions between two arcs
or a line and arc, specially if arc length parameterisation is of
importance, iterative algorithms have to be used. To evaluate
the robustness of the proposed method, the performance of the
developed algorithms was extensively tested and the results
were reported.

A comparison with Bezier fillets shows that using the pro-
posed method can result in a significantly shorter cycle time
with a much smaller number of fillets. It was demonstrated
that since Bezier fillets can only be fitted between two lines,
the toolpath has to be broken into a large number of lines and
consequently a large number of fillets have to be fitted. The
proposed method does not have this limitation.

The proposed method has a number of important advan-
tages and satisfies all of the requirements explained in section
3:

a. G2-continuity: The generated toolpath is curvature
continuous and eliminates any discontinuities in the orig-
inal toolpath.

b. Bounded maximum error: the deviation between the
smoothed toolpath and the original toolpath can be lim-
ited to a specified tolerance to maintain the accuracy of
the manufactured parts.

c. Analytical arc length formula: the arc length of the
generated fillets is readily available and unlike Bezier

curves, Quintic splines, etc. there is no need to use inte-
gration to calculate the arc length.

d. Arc length parameterisation: the generated path is arc
length parameterised which makes it easier to interpo-
late. There will be no feedrate fluctuations when inter-
polating the path and unlike PH curves, special interpo-
lators are not required.

e. Minimum curvature change: biclothoid fillets have a
triangle shaped curvature profile which gives the smallest
sharpness for a specified arc length [3].

To demonstrate the effectiveness of the proposed method a
CNC controller equipped with a jerk limited interpolator was
used. It was verified that without modifying the toolpath, the
controller has to slow down the machine at line to arc and arc
to arc transitions to keep the jerk within the limits. Using
the proposed method, the controller is able to maintain a high
feedrate without introducing any jerk spikes. For calculating
the feedrate limit not only the curvature but also the derivative
of curvature were taken into account.

The proposed method can be extended to achieve higher
degrees of continuity like G3-continuity, provided that the CNC
controller can generate a jounce limited velocity profile. For
G3-continuity, instead of clothoids, cubic spirals [43] may have
to be used. Future work could also investigate using clothoids
for generating smooth toolpaths for 5 axis CNC applications.
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